The Intriguing Regulators of Muscle Mass in Sarcopenia and Muscular Dystrophy
نویسندگان
چکیده
Recent advances in our understanding of the biology of muscle have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle mass and increased intramuscular fibrosis occur in both sarcopenia and muscular dystrophy. Several regulators (mammalian target of rapamycin, serum response factor, atrogin-1, myostatin, etc.) seem to modulate protein synthesis and degradation or transcription of muscle-specific genes during both sarcopenia and muscular dystrophy. This review provides an overview of the adaptive changes in several regulators of muscle mass in both sarcopenia and muscular dystrophy.
منابع مشابه
Novel Intriguing Strategies Attenuating to Sarcopenia
Sarcopenia, the age-related loss of skeletal muscle mass, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, increased risk of fall-related injury, and, often, frailty. Since sarcopenia is largely attributed to various molecular mediators affecting fiber size, mitochondrial homeostasis, and apoptosis, the...
متن کاملSarcopenia and Sarcopenic Obesity in Patients with Muscular Dystrophy
Aging sarcopenia and muscular dystrophy (MD) are two conditions characterized by lower skeletal muscle quantity, lower muscle strength, and lower physical performance. Aging is associated with a peculiar alteration in body composition called "sarcopenic obesity" characterized by a decrease in lean body mass and increase in fat mass. To evaluate the presence of sarcopenia and obesity in a cohort...
متن کاملDegeneration of Neuromuscular Junction in Age and Dystrophy
Functional denervation is a hallmark of aging sarcopenia as well as of muscular dystrophy. It is thought to be a major factor reducing skeletal muscle mass, particularly in the case of sarcopenia. Neuromuscular junctions (NMJs) serve as the interface between the nervous and skeletal muscular systems, and thus they may receive pathophysiological input of both pre- and post-synaptic origin. Conse...
متن کاملRole of Calsequestrin and Related Luminal Ca-Binding Proteins as Mediators of Excitation-Contraction Coupling
Changes in cytoplasmic Ca-levels regulate the contractile status of skeletal muscle fibres, whereby the finely tuned interplay between voltage sensors, Ca-release channels, Cabinding proteins and Ca-pumps mediates Ca-cycling through the sarcoplasmic reticulum. Although the physical coupling between the α1S-dihydropyridine receptor of the transverse tubules and the ryanodine receptor Ca-release ...
متن کاملP164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...
متن کامل